Telegram Group & Telegram Channel
Что делать, если дисперсия некоторого признака почти нулевая? Как поступить с таким признаком?

▶️ Нулевая дисперсия означает отсутствие разброса в значениях этого признака. Он почти не изменяется для всех наблюдений. Такие признаки часто считаются малоинформативными.

✔️ Наиболее очевидное решение здесь — удалить такой признак. Его отсутствие вряд ли негативно скажется на производительности вашей модели. Если вы в этом не уверены, то можно попробовать оценить влияние данного предиктора на производительность, то есть создать модели с ним и без него и сравнить их.

Есть и другие соображения по этому поводу. Например, рассматриваемый признак принимает два значения: ноль и единицу. В основном он реализуется через нули, а единицы встречаются несколько раз. При этом каждый раз, когда данный предиктор принимает значение 1, мы точно знаем, что объект принадлежит к определённому классу. То есть признак можно считать информативным. Одно из решений для такого предиктора — собрать больше данных, но это не всегда возможно. Также можно рассмотреть использование байесовских моделей.

Так, принимать решение об удалении какого-либо признака следует после внимательного изучения данных.

#машинное_обучение
#статистика



tg-me.com/ds_interview_lib/225
Create:
Last Update:

Что делать, если дисперсия некоторого признака почти нулевая? Как поступить с таким признаком?

▶️ Нулевая дисперсия означает отсутствие разброса в значениях этого признака. Он почти не изменяется для всех наблюдений. Такие признаки часто считаются малоинформативными.

✔️ Наиболее очевидное решение здесь — удалить такой признак. Его отсутствие вряд ли негативно скажется на производительности вашей модели. Если вы в этом не уверены, то можно попробовать оценить влияние данного предиктора на производительность, то есть создать модели с ним и без него и сравнить их.

Есть и другие соображения по этому поводу. Например, рассматриваемый признак принимает два значения: ноль и единицу. В основном он реализуется через нули, а единицы встречаются несколько раз. При этом каждый раз, когда данный предиктор принимает значение 1, мы точно знаем, что объект принадлежит к определённому классу. То есть признак можно считать информативным. Одно из решений для такого предиктора — собрать больше данных, но это не всегда возможно. Также можно рассмотреть использование байесовских моделей.

Так, принимать решение об удалении какого-либо признака следует после внимательного изучения данных.

#машинное_обучение
#статистика

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/225

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Библиотека собеса по Data Science | вопросы с собеседований from hk


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA